Math 3353, Spring 2017
Due March 3

Homework 6 – Matrix Operations and Invertible Matrices

1. Given the matrices
 \[A = \begin{bmatrix} 7 & 0 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -3 \\ -4 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}, \]
 compute each of the following by hand:
 (a) \(A(BC) \) and \((AB)C \)
 (b) \((ABC)^T \) and \(A^T B^T C^T \)
 (c) \(AC \)

2. Determine whether each of the following statements is True or False. If any item is False, give a specific counterexample to show that the statement is not always True.
 (a) The matrix product \(AA^T \) is always well-defined, and is a square matrix.
 (b) If the matrix products \(BA \) and \(AB \) are well-defined, then \(AB \) and \(BA \) must be square matrices.
 (c) If the matrix products \(BA \) and \(AB \) are well-defined, then \(A \) and \(B \) must be square matrices.
 (d) The matrix power \(A^2 \) is always well-defined.

3. Write down the \(3 \times 3 \) elementary matrices that perform the following steps:
 (a) \(E_1 \) adds row 1 to row 2, and then \(E_2 \) exchanges rows 2 and 3. What matrix \(M = E_2 E_1 \) does both operations at once?
 (b) \(\tilde{E}_1 \) exchanges rows 2 and 3, and then \(\tilde{E}_2 \) adds row 1 to row 3. What matrix \(\tilde{M} = \tilde{E}_2 \tilde{E}_1 \) does both operations at once?

 Explain in a sentence why \(M \) and \(\tilde{M} \) in the above parts are the same, but the individual matrices \(E_1, E_2, \tilde{E}_1 \) and \(\tilde{E}_2 \) are different.

4. If the product \(D = ABC \) of three square matrices is invertible, then \(A \) must be invertible (so are \(B \) and \(C \)). Find a formula for \(A^{-1} \) (i.e. \(A^{-1} = \cdots \)) that involves only the matrices \(B, B^{-1}, C, C^{-1}, D \) and/or \(D^{-1} \).
5. **MATLAB:** Matlab has a number of built-in matrices that arise frequently in scientific computing. Construct the 10×10 Hilbert matrix with the command $A = \text{hilb}(10)$, and create a vector $\mathbf{x} \in \mathbb{R}^{10}$ of all ones, $\mathbf{x} = \text{ones}(10,1)$. Use these to create a right-hand side vector $\mathbf{b} = A\mathbf{x}$, via the command $\mathbf{b} = A\mathbf{x}$.

You will solve the linear system $A\mathbf{x} = \mathbf{b}$ in two ways:

a. Solve using the “backslash” command (Matlab’s shortcut for performing Gaussian elimination) to get a solution vector, $y = A\backslash\mathbf{b}$.

b. Compute A^{-1} using Matlab’s “inv” function, $\text{Ainv} = \text{inv}(A)$, and solve using the inverse matrix, $\mathbf{z} = A^{-1}\mathbf{b}$, via the command $\mathbf{z} = \text{Ainv*}\mathbf{b}$.

Compute the error vectors for both solutions, $\mathbf{x} - \mathbf{y}$ and $\mathbf{x} - \mathbf{z}$. Which result is more accurate (you’ll learn why in Math 3315/3316)?