Exam 2 Practice Solutions

Math 3353, Spring 2017

1. Compute
\[
\begin{vmatrix}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -6 & -7 & 5 \\
5 & 0 & 4 & 0
\end{vmatrix}
\]
using a method of your choosing.

Solution: Since row two has 3 out of 4 zero entries, I’ll use cofactor expansion across the second row, followed by expansion across the third row, followed by the definition of the 2x2 determinant:
\[
\begin{vmatrix}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -6 & -7 & 5 \\
5 & 0 & 4 & 0
\end{vmatrix} = -3 \begin{vmatrix}
1 & -2 & 2 \\
2 & -6 & 5 \\
5 & 0 & 0
\end{vmatrix} = (-3)(5) \begin{vmatrix}
-2 & 2 \\
-6 & 5 \\
0 & 0
\end{vmatrix} = (-3)(5)(2)
= -30.
\]

Alternately, you could have used row-reduction, ensuring to keep track of how row scaling and swapping modify the determinant:
\[
\begin{vmatrix}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -6 & -7 & 5 \\
5 & 0 & 4 & 0
\end{vmatrix} = \begin{vmatrix}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
0 & -2 & -17 & 1 \\
0 & 0 & 3 & 0
\end{vmatrix} = (-1)(-2)(3)(-5) = -30.
\]
2. If \[\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7, \] compute \[\begin{vmatrix} 2d & 2e & 2f \\ 2a & 2b & 2c \\ 2g & 2h & 2i \end{vmatrix}. \]

Solution: The second matrix is formed by swapping rows 1 and 2 from the first matrix, which makes the determinant negative. The second matrix also scales each row by a factor of 2; since this scaling occurs on three rows, it changes the determinant by a factor of \(2^3\).

Hence the determinant of the second matrix equals \(-8)(7) = -56\).
3. Use Cramer’s rule to solve the linear system $A\vec{x} = \vec{b}$ for only the solution component x_2.

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 4 \\ 3 \\ 4 \\ 0 \end{bmatrix}$$

Solution: To use Cramer’s rule to compute x_2, we compute the formula

$$x_2 = \frac{|A_2(\vec{b})|}{|A|}.$$

Due to the large number of zeros in the matrix, I’ll compute these determinants by using cofactor expansion across row 1 at every step:

$$|A_2(\vec{b})| = \begin{vmatrix} 2 & 4 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 4 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 3 & 1 & 0 \\ 4 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} - 4 \begin{vmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= 2 [3(4 - 1) - (8 - 0)] - 4 [(4 - 1) - (0 - 0)]$$

$$= 2 [9 - 8] - 4 [3]$$

$$= 2 - 12$$

$$= -10$$

$$|A| = \begin{vmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} - 0 \begin{vmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= 2 [2(4 - 1) - (2 - 0)] - [(4 - 1) - (0 - 0)]$$

$$= 2 [6 - 2] - [3]$$

$$= 8 - 3$$

$$= 5.$$

Hence

$$x_2 = \frac{-10}{5} = -2.$$
4. Let W be the set of vectors of the form
\[
\begin{bmatrix}
0 \\
2a + b \\
3b - a \\
4a - 7b
\end{bmatrix},
\]
where a and $b \in \mathbb{R}$. If W is a vector space find a set of vectors that spans W; otherwise prove that W is not a vector space.

Solution: A set of vectors that spans W is
\[
W = \text{Span}\left\{ \begin{bmatrix} 0 \\ 2 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \\ -7 \end{bmatrix} \right\} = \text{Span}\{ \vec{u}, \vec{v} \}.
\]

The problem is finished at this point.

However, for further explanation, let’s note that since W can be written as a span of a set of vectors, then W is automatically a vector space. As we proved in class,
\[
\vec{0} = 0\vec{u} + 0\vec{v} \in \text{Span}\{ \vec{u}, \vec{v} \}.
\]

Furthermore, if \vec{x} and \vec{y} are in W then $\vec{x} = c_1\vec{u} + c_2\vec{v}$ and $\vec{y} = d_1\vec{u} + d_2\vec{v}$ for appropriate constants $c_1, c_2, d_1, d_2 \in \mathbb{R}$, so
\[
\begin{align*}
\quad a\vec{x} + b\vec{y} &= a (c_1\vec{u} + c_2\vec{v}) + b (d_1\vec{u} + d_2\vec{v}) \\
&= (ac_1 + bd_1)\vec{u} + (ac_2 + bd_2)\vec{v} \\
&= p\vec{u} + q\vec{v} \in \text{Span}\{ \vec{u}, \vec{v} \},
\end{align*}
\]
where $p = (ac_1 + bd_1) \in \mathbb{R}$ and $q = (ac_2 + bd_2) \in \mathbb{R}$, so W is a subspace of \mathbb{R}^4, and hence it is a vector space.
5. Consider \(A = \begin{bmatrix} 2 & -5 & -2 & 6 & 1 \\ -2 & 5 & 0 & 1 & 0 \end{bmatrix} \). Find \(p \) such that \(\text{Nul}(A) \) is a subspace of \(\mathbb{R}^p \). Find \(q \) such that \(\text{Col}(A) \) is a subspace of \(\mathbb{R}^q \). Write two nonzero vectors, \(\vec{x} \in \text{Nul}(A) \) and \(\vec{y} \in \text{Col}(A) \).

Solution: Since \(A \in \mathbb{R}^{2 \times 5} \), then \(p = 5 \) and \(q = 2 \). To find a nonzero vector \(\vec{y} \in \text{Col}(A) \) we may select any linear combination of the columns of \(A \), e.g. the first column of \(A \):
\[
\vec{y} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}.
\]

To find a nonzero vector \(\vec{x} \in \text{Nul}(A) \) we must first reduce \(A \) to echelon form,
\[
A = \begin{bmatrix} 2 & -5 & -2 & 6 & 1 \\ -2 & 5 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -5 & -2 & 6 & 1 \\ 0 & 0 & -2 & 7 & 1 \end{bmatrix}.
\]
We have three free variables \(x_2, x_4 \) and \(x_5 \), so we may find \(\vec{x} \) by setting these free variables to any desired values (as long as at least one is nonzero), e.g. \(x_2 = 2, x_4 = x_5 = 0 \). Solving for the remaining two components of \(\vec{x} \) by using the two rows of the echelon form of \(A \), we have
\[
-2x_3 + 7x_4 + x_5 = 0 \quad \Rightarrow \quad 2x_3 = 0 \quad \Rightarrow \quad x_3 = 0,
\]
\[
2x_1 - 5x_2 - 2x_3 + 6x_4 + x_5 = 0 \quad \Rightarrow \quad 2x_1 - 10 = 0 \quad \Rightarrow \quad x_1 = 5.
\]

Hence a nonzero \(\vec{x} \in \text{Nul}(A) \) is \(\vec{x} = \begin{bmatrix} 5 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \).
6. Let \(A = \begin{bmatrix} 2 & 4 & -4 & 6 & 0 & 2 \\ -3 & -6 & 6 & -9 & 1 & 2 \\ -1 & -2 & 2 & -3 & 3 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \). Find bases for \(\text{Nul}(A) \) and \(\text{Col}(A) \). What are the dimensions of these two subspaces?

Solution: The easier half of the question is \(\text{Col}(A) \), where the basis consists of each column from \(A \) that contains a pivot when reduced to echelon form:

\[
\text{Col}(A) = \text{Span} \left\{ \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \right\}.
\]

Since \(\text{Col}(A) \) has two basis vectors, it has dimension 2.

For \(\text{Nul}(A) \) we merely find the solution set to \(A\vec{x} = \vec{0} \) in parametric vector form. We have four free variables, \(x_2, x_3, x_4 \) and \(x_6 \). The remaining two equations require that

\[
x_5 + 5x_6 = 0 \quad \Rightarrow \quad x_5 = -5x_6 \\
x_1 + 2x_2 - 2x_3 + 3x_4 + x_6 = 0 \quad \Rightarrow \quad x_1 = -2x_2 + 2x_3 - 3x_4 - x_6.
\]

Putting these together, we have

\[
\text{Nul}(A) = \text{Span} \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ -5 \end{bmatrix} \right\}.
\]

Since \(\text{Nul}(A) \) has four basis vectors, it has dimension 4.
7. Suppose that (\vec{v}, α) is an eigenpair of an invertible matrix A (hence \vec{v} is also an eigenvector of A^{-1}). Also suppose that (\vec{v}, β) is an eigenpair of a matrix B. Show that \vec{v} is an eigenvector of the matrix $C = (3A^{-1} + B)$, and find its corresponding eigenvalue, λ.

Solution: To show that \vec{v} is an eigenvector of C, we merely multiply $C\vec{v}$ and show that it equals $\lambda \vec{v}$. The resulting factor λ will be the eigenvalue.

First, we note that since A is invertible then A^{-1} exists, and the eigenvalue $\alpha \neq 0$, so

\[
A\vec{v} = \alpha \vec{v} \iff A^{-1}A\vec{v} = A^{-1}\alpha \vec{v} \\
\iff \vec{v} = \alpha A^{-1}\vec{v} \\
\iff \frac{1}{\alpha} \vec{v} = \frac{\alpha}{\alpha} A^{-1}\vec{v} \\
\iff \frac{1}{\alpha} \vec{v} = A^{-1}\vec{v},
\]

so $\frac{1}{\alpha}$ is the eigenvalue of A^{-1} corresponding to the eigenvector \vec{v}.

We now multiply:

\[
C\vec{v} = (3A^{-1} + B)\vec{v} = 3A^{-1}\vec{v} + B\vec{v} = \frac{3}{\alpha} \vec{v} + \beta \vec{v} = \left(\frac{3}{\alpha} + \beta\right) \vec{v} = \lambda \vec{v},
\]

where the eigenvalue is $\lambda = \frac{3}{\alpha} + \beta$.
8. Assume that \(A = QBQ^{-1} \), where
\[
A = \begin{bmatrix}
-15 & 21 & -7 \\
-12 & 17 & -5 \\
-8 & 12 & -2
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
-1 & 0 & 0 \\
2 & 2 & 0 \\
-1 & 2 & -1
\end{bmatrix}.
\]
Find the eigenvalues of \(A \).

\textit{Solution:} There are two ways to do this problem, the very easy way and the harder way. The harder way would be to directly compute the characteristic polynomial \(|A - \lambda I|\) and factor the resulting cubic polynomial to find its roots.

The very easy way is to realize that the problem is saying that \(A \) and \(B \) are related by a similarity transformation, \(A = QBQ^{-1} \) or \(B = Q^{-1}AQ \), which indicates that the two matrices have the same eigenvalues (as we proved in class).

Furthermore, since \(B \) is lower-triangular, its eigenvalues are just the values on the diagonal, meaning that
\[
\lambda(B) = \{-1, 2, -1\}.
\]
Note: I listed -1 twice just to show its algebraic multiplicity; this is not required.

\textit{Hence the eigenvalues of} \(A \) \textit{are also} \(\lambda(A) = \{-1, 2, -1\} \).
9. The matrix \(A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \) has eigenvalue/eigenvector pairs \(\lambda_1 = 5, \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \(\lambda_2 = -2, \vec{v}_2 = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \). Diagonalize \(A \) (i.e. write 3 matrices, \(P \), \(D \) and \(P^{-1} \) such that \(A = PDP^{-1} \)).

Solution: Since we are given all of the eigenvalues and eigenvectors of \(A \), this problem only requires that we organize this information and compute one 2x2 matrix inverse.

First, \(P \) contains the two eigenvectors and \(D \) contains the two eigenvalues on its diagonal. The order of these must match. I’ll put them in the order as stated,

\[
P = \begin{bmatrix} 1 & -3 \\ 1 & 4 \end{bmatrix}, \quad D = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}.
\]

To finish the diagonalization, we must compute \(P^{-1} \). For a 2x2 matrix we have the simple analytical formula

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},
\]

so

\[
P^{-1} = \frac{1}{4 + 3} \begin{bmatrix} 4 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4/7 & 3/7 \\ -1/7 & 1/7 \end{bmatrix}
\]

and our diagonalization is

\[
\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 4/7 & 3/7 \\ -1/7 & 1/7 \end{bmatrix}.
\]

Note: to check your work, you could multiply the three matrices on the right to see if they in fact equal \(A \).
10. The matrix $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$ has an eigenvector/eigenvalue pair $\lambda_1 = 3 - i$, $\vec{v}_1 = \begin{bmatrix} 5 \\ 2 + i \end{bmatrix}$.

(a) What is the other eigenpair?

Solution: Since $A \in \mathbb{R}^{2 \times 2}$ we may easily state that the other eigenpair consists of the complex conjugates of this eigenpair, i.e. $\lambda_2 = 3 + i$ and $\vec{v}_2 = \begin{bmatrix} 5 \\ 2 - i \end{bmatrix}$.

(b) Find an invertible matrix P and a rotation matrix C such that $A = PCP^{-1}$.

Solution: As we learned in class, these matrices may be constructed using a complex eigenpair of A itself. We can use either eigenpair; here I’ll use the one that was provided:

$$P = \begin{bmatrix} \text{Re}(\vec{v}_1) & \text{Im}(\vec{v}_1) \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} \text{Re}(\lambda_1) & \text{Im}(\lambda_1) \\ -\text{Im}(\lambda_1) & \text{Re}(\lambda_1) \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}.$$