1. Consider the following 3 data points:

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>28</td>
<td>2</td>
<td>-8</td>
</tr>
</tbody>
</table>

Interpolate the data with a polynomial using a method of your choosing (tell me which method you use). Write the interpolating function (do not simplify). Use it to estimate \(f(0) \).

2. Suppose you wish to use \(n+1 \) points to interpolate the function \(\sin \left(\frac{x}{2} \right) \) on the interval \([0, 2]\).

Write a formula that \(n \) must satisfy in order to guarantee that the error in this interpolation is below \(10^{-4} \), assuming

(a) the nodes are uniformly-spaced within \([0, 2]\), and

(b) the nodes are randomly placed within \([0, 2]\).

3. Using the 3 points \(f(x) \), \(f(x - h) \) and \(f(x + 3h) \) we want to derive an approximation

\[
f''(x) \approx w_1 f(x) + w_2 f(x - h) + w_3 f(x + 3h).
\]

(a) Write the linear system that you must solve to find the coefficients \(w_j \) (do not solve).

(b) If the solution to this system is \(w_1 = -\frac{2}{3h^2} \), \(w_2 = \frac{1}{2h^2} \), \(w_3 = \frac{1}{6h^2} \), write the approximation formula for \(f''(x) \).

(c) What is the order of accuracy for this approximation (e.g. \(O(h^8) \))?

4. Approximate the integral

\[
\int_{-1}^{1} (x^2 - 2x - 1) \, dx
\]

using (a) the midpoint rule, (b) the trapezoid rule, and (c) Simpson’s rule. Give the error in each of these approximations.
5. Suppose that you want to approximate the integral
\[\int_{-1}^{1} \frac{dx}{2 + x} \]
using the composite Trapezoidal and composite Simpson rules over a uniform partition, \(P = \{x_0 < x_1 < \ldots < x_n\} \), \(T(f;P) \) and \(S(f;P) \). Use the asymptotic error formulas from class to write formulas for the minimum number of subintervals required for each method to guarantee an error below \(10^{-8} \). [i.e. 2 formulas of the form “\(n > \ldots \)”]

6. Find the coefficients \(w_1 \) and \(w_2 \) that provide the best approximation of the integral
\[\int_{-1}^{1} f(x) \, dx \approx w_1 f\left(-\frac{1}{2}\right) + w_2 f\left(\frac{1}{3}\right). \]
Write the resulting formula. What is its degree of precision?